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Waiting time paradox applied to transient times
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Different methods for computing transient lengths in chaotic systems can give very different answers. This
situation is resolved by the use of a waiting time parad84.063-651X98)05201-3
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I. PROBLEM an average transient length ef=125.203. Clearlyr, is

When working with chaotic systems, the average IengthalrnOSt exactly one half of; .

of a transient phase before a particular event occurs is often
required. Examples of this include the transient phase before
a control mechanism can be activaf@cP] or the length of a Consider the following classical paradox from probability
chaotic transient after a crisis has occurf8fl In both cases, theory. Suppose that a system follows a Poisson process in
the transient occurs before iterates fall into a small regionyhich a series of events, the arrivals, occur randomly in time
For controlling chaos, this region is a target region, typicallysych that the following two postulates hold) The arrivals
around a fixed or periodic point, in which control can then bein the time interval {,t+h] are independent of the arrivals
applied. In the case of a crisis, the region is a small escapg the time interval (@]. This is the memoryless property of
region. _ o _ a Poisson proces$B) The probability of a single event oc-
There are different ways in which a transient phase can bgyring in a small time intervalt(t+h] is rh+o(h), while
computed numerically, with very different answers being ob-he probability of more than one eventdagh). An alterna-
tained for the average length in some cases. We consider tWe and equivalent characterization of the Poisson process is
methods for computing the average length of the transienta¢ the interarrival timegthe times between consecutive
which occurs before an iterate enters a particular small targgvems are independently distributed with an exponential

or escape region. o o distribution. That is,
(1) A large number of initial conditions is taken whose

distribution is the same as the invariant probability distribu- P(T>t)=e Y7,

tion of the chaotic attractor. The lengths of the transient

phases before entering the target region are then averagedvhereT is the interarrival time and is the average interar-
(2) Let p be the measure of the chaotic attractor containedival time.

in the target region. Thep is also the probability of an There are two contradictory arguments for estimating the

iterate entering the target region. A standard calculation the@verage time before the next arrival from a random starting

gives that the average length of the transient phasepis 1/ time. Let the time for the next arrival starting from timée
The second method is often used when deriving expoW;. The two arguments are then as followis: The average

nents in scaling laws for transient timga,3]. To illustrate  time between arrivals is. Hence by arriving at random,

II. WAITING TIME PARADOX

the different methods, we consider théride map symmetry tell us that the average arrival timegis (i) The
Xni1=1—1.4C+y,, 040 ' '
=0.%,,
Yn+1 n 030 F . 1

which has a saddle fixed point at x* y*)
=(0.631 35, 0.189 41). When controlling chaos, the typical SR
target region consists of a parallelogram centred on a fixed Y 020 Lo H ]
point with sides parallel to the stable and unstable manifolds e
of the fixed point. Such a target region is shown in Fig. 1. } e
The initial conditions are obtained for the first method by 0.10 | R g
taking every 1000th iterate of a long orbit. Averaging over R
10 000 initial conditions gives an average transient length
before entering the target region ef=249.639. For the

second method, the probabilipyis calculated as the number 0005 00 05 1.0
of iterates in the target region divided by the total number of X

iterates in a long orbit. Using an orbit of lengtixa (® gives

a value of the probability to bep=7.987x 103, and thus FIG. 1. Target region around a fixed point.
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Poisson process has no memory hence the expected waitin ~ 0.0040 . .
time should be independent tf the initial time. Therefore,

E(W) = E(Wto) =T 0.0030 |

ty

Both arguments are very plausible. The problem is under- :
stood by noting that there is a difference between averagingg
over all gaps, and averaging over gaps chosen by a randong 0.0020 -
initial time. In choosing a random arrival time you are much
more likely to arrive in the middle of a long gap than a short
one. In fact, as a simple calculation shows, the average gg910 L
length of a gap chosen at random is(8ee Ref[4]). Hence
the paradox is resolved.
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IIl. APPLICATION TO CALCULATION OF TRANSIENTS 00000, 5 500.0 1000.0 1500.0

Transient Length T

To apply the above theory to the chaotic system we con-
sider discrete time which we partition into blocksrofitera- FIG. 2. Distribution of transient lengths.
tions such that the position aftek{ 1)m iterations is(ap-
proximately independent of that aftdem iterations. LetT
be the number of iterations until the first entry into the targe

[Erovided thatm/w is small. In other words if the average
region and define

umber of iterations needed between hitting the target region
is large relative to the memory of the process then the times
Tm=inf{k|km>T}. between hits are well approximated by an exponential distri-

bution for sufficiently long transient lengths. Hence the Pois-

By the independence property we can apply a Bernoullson process model is appropriate.
model to the distribution off ,,. Hence if p,=P(T,=1) The distribution of transient lengths for the example in
then, Sec. | is shown in Fig. 2. There is considerable variation for

(T, >k)=(1—py)K small values off, and so these have not been included. The
m Pm curvee” "1/ 7 is also shown, where; is the average ob-
and tained earlier, and clearly there is good agreement. This type
of distribution has been observed previously in the calcula-
tion of transientg3].

This approach gives a direct interpretation of the results
of Sec. | in terms of the waiting time paradox. The second
We also have the approximation that method averages equally over all interarrival times and cor-

E[T]=mET,]= responds to argumefd), so thatr,= w/2, which is half the
m ' average interarrival time, while the first method finds the

E[To]= —
[m]_p .

m

say. Combining these gives average waiting time given a random starting time which
corresponds to argumefB). This weights the average to-
P(Tm>K)=(1=pm)*=(1—m/p)*~(1—m/p)"™ ward the longer waiting times giving, = u.

—[(1—m/ ) mtle Finally, we note that in many cases, scaling laws with
¥ ' respect to a parameter are derived for transients, and these
Hence, moving back fronT,, to T and appealing to the are then tested numericall,3]. Clearly the scaling law will

smoothing properties of probability distributions, we havebe the same which ever method is used for calculating the
the approximation transients. However, if a comparison of absolute lengths of

transients is required, it is clearly essential to use the same
P(T>t)=e Y~ method in both cases to obtain a true comparison.
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