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Waiting time paradox applied to transient times
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Department of Mathematical and Computing Sciences, University of Surrey, Guildford, Surrey GU2 5XH, United Kingdom

~Received 12 June 1997!

Different methods for computing transient lengths in chaotic systems can give very different answers. This
situation is resolved by the use of a waiting time paradox.@S1063-651X~98!05201-5#

PACS number~s!: 05.45.1b
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I. PROBLEM

When working with chaotic systems, the average len
of a transient phase before a particular event occurs is o
required. Examples of this include the transient phase be
a control mechanism can be activated@1,2# or the length of a
chaotic transient after a crisis has occurred@3#. In both cases,
the transient occurs before iterates fall into a small regi
For controlling chaos, this region is a target region, typica
around a fixed or periodic point, in which control can then
applied. In the case of a crisis, the region is a small esc
region.

There are different ways in which a transient phase can
computed numerically, with very different answers being o
tained for the average length in some cases. We consider
methods for computing the average length of the trans
which occurs before an iterate enters a particular small ta
or escape region.

~1! A large number of initial conditions is taken whos
distribution is the same as the invariant probability distrib
tion of the chaotic attractor. The lengths of the transi
phases before entering the target region are then averag

~2! Let p be the measure of the chaotic attractor contain
in the target region. Thenp is also the probability of an
iterate entering the target region. A standard calculation t
gives that the average length of the transient phase is 1p.

The second method is often used when deriving ex
nents in scaling laws for transient times@2,3#. To illustrate
the different methods, we consider the He´non map

xn115121.4xn
21yn ,

yn1150.3xn ,

which has a saddle fixed point at (x* ,y* )
5(0.631 35, 0.189 41). When controlling chaos, the typi
target region consists of a parallelogram centred on a fi
point with sides parallel to the stable and unstable manifo
of the fixed point. Such a target region is shown in Fig. 1

The initial conditions are obtained for the first method
taking every 1000th iterate of a long orbit. Averaging ov
10 000 initial conditions gives an average transient len
before entering the target region oft15249.639. For the
second method, the probabilityp is calculated as the numbe
of iterates in the target region divided by the total number
iterates in a long orbit. Using an orbit of length 33106 gives
a value of the probabilityp to bep57.98731023, and thus
571063-651X/98/57~1!/1181~2!/$15.00
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an average transient length oft25125.203. Clearlyt2 is
almost exactly one half oft1 .

II. WAITING TIME PARADOX

Consider the following classical paradox from probabil
theory. Suppose that a system follows a Poisson proces
which a series of events, the arrivals, occur randomly in ti
such that the following two postulates hold:~A! The arrivals
in the time interval (t,t1h# are independent of the arrival
in the time interval (0,t#. This is the memoryless property o
a Poisson process.~B! The probability of a single event oc
curring in a small time interval (t,t1h# is th1o(h), while
the probability of more than one event iso(h). An alterna-
tive and equivalent characterization of the Poisson proces
that the interarrival times~the times between consecutiv
events! are independently distributed with an exponent
distribution. That is,

P~T.t !5e2t/t,

whereT is the interarrival time andt is the average interar
rival time.

There are two contradictory arguments for estimating
average time before the next arrival from a random start
time. Let the time for the next arrival starting from timet be
Wt . The two arguments are then as follows:~i! The average
time between arrivals ist. Hence by arriving at random
symmetry tell us that the average arrival time is1

2 t. ~ii ! The

FIG. 1. Target region around a fixed point.
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Poisson process has no memory hence the expected wa
time should be independent oft0 the initial time. Therefore,

E~Wt!5E~Wt0
!5t.

Both arguments are very plausible. The problem is und
stood by noting that there is a difference between averag
over all gaps, and averaging over gaps chosen by a ran
initial time. In choosing a random arrival time you are mu
more likely to arrive in the middle of a long gap than a sh
one. In fact, as a simple calculation shows, the aver
length of a gap chosen at random is 2t ~see Ref.@4#!. Hence
the paradox is resolved.

III. APPLICATION TO CALCULATION OF TRANSIENTS

To apply the above theory to the chaotic system we c
sider discrete time which we partition into blocks ofm itera-
tions such that the position after (k11)m iterations is~ap-
proximately! independent of that afterkm iterations. LetT
be the number of iterations until the first entry into the tar
region and define

Tm5 inf$kukm.T%.

By the independence property we can apply a Berno
model to the distribution ofTm . Hence if pm5P(Tm51)
then,

P~Tm.k!5~12pm!k

and

E@Tm#5
1

pm
.

We also have the approximation that

E@T#5mE@Tm#5m,

say. Combining these gives

P~Tm.k!5~12pm!k5~12m/m!k'~12m/m! t/m

5@~12m/m!m/m# t/m.

Hence, moving back fromTm to T and appealing to the
smoothing properties of probability distributions, we ha
the approximation

P~T.t !5e2t/m,
ing

r-
g
m

t
e

-

t

li

provided thatm/m is small. In other words if the averag
number of iterations needed between hitting the target reg
is large relative to the memory of the process then the tim
between hits are well approximated by an exponential dis
bution for sufficiently long transient lengths. Hence the Po
son process model is appropriate.

The distribution of transient lengths for the example
Sec. I is shown in Fig. 2. There is considerable variation
small values ofT, and so these have not been included. T
curve e2T/t1/t1 is also shown, wheret1 is the average ob-
tained earlier, and clearly there is good agreement. This t
of distribution has been observed previously in the calcu
tion of transients@3#.

This approach gives a direct interpretation of the resu
of Sec. I in terms of the waiting time paradox. The seco
method averages equally over all interarrival times and c
responds to argument~A!, so thatt25m/2, which is half the
average interarrival time, while the first method finds t
average waiting time given a random starting time wh
corresponds to argument~B!. This weights the average to
ward the longer waiting times givingt15m.

Finally, we note that in many cases, scaling laws w
respect to a parameter are derived for transients, and t
are then tested numerically@2,3#. Clearly the scaling law will
be the same which ever method is used for calculating
transients. However, if a comparison of absolute lengths
transients is required, it is clearly essential to use the sa
method in both cases to obtain a true comparison.

FIG. 2. Distribution of transient lengths.
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